Beautiful sequence

322 viewsOlympiadsNumber Theory Sequence
0

We’ll say that a sequence of 174fadd07fd54c9afe288e96558c92e0c1da733a positive integers (6b3c3c7c8b37696edc4ee36ddeb07eea4cefc3e7) is 8c325612684d41304b9751c175df7bcc0f61f64f-beautiful if for each ff83105557fa452974107ed1f164b322e4fe8fd8 the number 7ce6a001a3e8a31dd7030c808dd8b8ec0155da73 is a multiple of 8c325612684d41304b9751c175df7bcc0f61f64f and fe0187fc6f64a6f75890bcf197bddd1f5549bc1d for each 34857b3ba74ce5cd8607f3ebd23e9015908ada71.
For example, d31b8dec44f3d17f934a5202fc738d68b5d2768d is a e0a0db32027a732ac57d37ef2ae9bb150f65b108-beautiful sequence.
Let the sum of a sequence be 5986c8bcb11044ccf95bc1d3632449b3405c92c7.
Find the greatest possible value of the sum that a 030e19e4e2f1c074127cb50581e8496470c5419f-beautiful sequence of length 509a9369d5c55fd98dc99cb2938fb44f0101f90a can have.

Asked question